

Digital Rock Analysis

Integrating drill cuttings analysis with subsurface data

Alex Mock and Håkon Ruelåtten

Numerical Rocks

Introduction to the e-Core technology and pore-scale modeling

Substrate the second state of the second state

Digital Rock Analysis

The e-Core Technology

Pore-scale Modelling - Summary

numericalrocks

Thin Section Analysis

numericalrocks

- 💰 porosity
- cement & clays
- **s**rain size distribution

Grain Size:
binarize image
distance tranform
stereological correction
grain size distribution

(1) Sedimentation and Compaction:

(2) Realistic Grain Shapes:

(3) Carbonate Grainstones:

(4) Diagenesis:

Thin Section Reservoir Rock

2D section in a reconstructed 3D model

Max. tube voltage	180 kV
Max. output	15 W
Detail detectability	Up to 200nm (0.2µm)
Min. focus-detector-distance	0.4mm
Max. voxel resolution (depending on object size)	< 500nm (0.5µm)
Geometric magnification (3D)	1.5 times up to 100 times
Max. object size (height x diameter)	150mm x 120mm / 5.9" x 4.7"
Max. object weight	2 kg/ 1.1 lb
lmage chain	5-Megapixel fully digital image chain
2D X-ray Imaging	no
3D computed tomography	yes
Advanced surface extraction	yes (optional)
CAD comparison + dimensional measurement	yes (optional)
System size	(1640 x 1430 x 750 mm), (64.6" x 56.3" x 29.5"), larger cabinets on request
System weight	1300kg / 2866 lb

Sample Preparation

Cutting

Impregnation

Bit size: 0.5mm to 10mm

Drilling

MICP and NMR pore size distributions

- Heterogeneous at all scales including the pore-scale
- Replace single data points (non-stationary) with "stationary" transforms (i.e. cross-correlations) 10000 Models Sub1 1 Sub 2 Sub 3 Sub 4 ♦ Exp 1000 meability (mD) Per 8 cubes 100 1000 ♦ Exp Models Sub1 1 • Sub 2 Sub 3 Sub 4 10 0.05 0.2 0 0.1 0.15 Porosity L 100 110 10 0.00 0.05 0.10 0.15 0.25 0.20

www.numericalrocks.com

Porosity

Single Pore

- 💰 pore sizes
- 💰 pore volumes
 - 💰 🛛 intergranular & clay
- 💰 cross-sectional shape

✓ G = A/P²

Multi-Phase Flow Simulations

Digital Rock Analysis

Using Drill Cuttings

- Use drill cuttings during well drilling to obtain the basic reservoir properties; e.g., absolute and relative permeabilities, capillary pressures, residual saturations, petrophysical characteristics, formation factor, sonic velocities, NMR relaxation.
- **To start with, we need a representative 3D digital model of the rock, that**
 - has sufficiently high resolution in order to see the connectivity of the pore system, and
 - *contains a "Representative Elementary Volume" (REV) of the rock.*
 - We have two approaches to obtain such a model:

^{*}Process Based Modelling

We can use drill cuttings to construct representative rock models:

Cleaned and dried cuttings with chip sizes up to several mm \rightarrow original rock texture is well preserved

ericalrocks.com

Cleaned and dried cuttings with chip sizes up to several mm \rightarrow original rock texture is well preserved

- Integrate available data into the modeling process:
 - 🖌 Logs
 - Geological Models
 - Electromagnetic ?
 - Seismic ?
- Use purpose built drill bits for accurate sampling and good samples
 - e.g. PLATYPUS drill cuttings sampler

Digital Rock Analysis

Case Studies

Client	North African Oil Company
Operating field area	North African oil reservoir
Sample Type	2 well consolidated and heterogeneous sample
Methodology used	Micro-CT and process based modelling /Anchoring to SCAL data

SEM image

Micro-CT image

Sample	SSW01		
Data set	Model	МСТ	lab
k hor.	1305	1301	*
k vert.	946	966	1442^{*}
k avg	1185	1189	
FRF	24.6	29.4	

*measured on stacked cores

- Simulation results match experimental data confirming mixed wettability.
- This physical description of wettability was applied to 12 additional samples without SCAL data.

Heterogeneous Clastic Rocks

Client	Middle Eastern Oil Company
Operating field area	Middle East oil reservoir
Sample Type	2 consolidated and very heterogeneous clastic sample with several micro-facies on thin section scale
Methodology used	Process based modelling for different micro-facies

Thin section

SEM image

Models for 3 different micro-facies

amplo	1	
Sample	Model	Lab
Effective Porosity [frac.]	0.227	n/a
Total ("He") Porosity [frac.]	0.247	0.237
Abs. Permeability [mD]	762	749

Porosity and permeability of different micro-facies were averaged according to observed area fractions in thin section

In spite of sample heterogeneity, petrophysical properties were predicted accurately.

Client	Norwegian giant
Operating field area	North Sea
Sample Type	Poorly consolidated and heterogeneous sample
Methodology used	Micro-CT and process based modelling (PBM)

Comparisons

MCT image (left) and PBM image

Examples – Case Study III

	МСТ	PBM
kx (mD)	736	828
ky (mD)	630	731
kz (mD)	852	778
k_avg	739	779

	МСТ	PBM
Fx	17.5	12.2
Fy	16.0	12.4
Fz	13.6	12.6
F_avg	15.5	12.4

- Simulation results propose AI of ~0.5.
- Relative permeabilities match lab results.

Examples – Case Study IV

Endpoints from Relative Permeability Simulations – All Fields

- Single sample --- Multiple data sets --- Better solutions
- Obtain early reservoir evaluation of a well (e.g. directly from drill cuttings)
- Re-use of models for multiple fluid flow simulations and for future use (extremely time and cost efficient).
- Sensitivity tests can be easily performed for different wettability preferences and different irreducible water saturations.
- **Compare, complement, explain and extend core plug SCAL data**

- The e-Core technology is a powerful tool for rock and reservoir characterization. The analysis can provide input data throughout the lifetime of the field; from exploration wells to reservoir characterisation; evaluation of EOR potential and Tail-end IOR.
- Input to the analyses must be rock samples that contain 'a representative elementary volume (REV)'. Drill cuttings may represent REV.
- e-Core analyses based on drill cuttings may provide advanced petrophysical and reservoir parameters for formation characterization 'while drilling', and thereby
- Improve the decision making regarding well completion and production strategy.